При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1.40.2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Среди перечисленных ниже физических величин скалярная величина указана в строке:

1) перемещение

2) сила

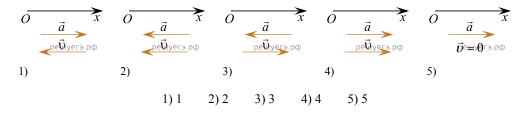
3) импульс

4) скорость

2. Велосипедист равномерно движется по шоссе. Если за промежуток времени $\Delta t_1 = 5,0$ с он проехал путь $s_1 = 60$ м, то за промежуток времени $\Delta t_2 = 7,0$ с велосипедист проедет путь s_2 , равный:

1) 64 m 2) 70 m 3) 77 m 4) 84 m 5) 90 m

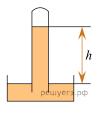
3. Почтовый голубь дважды пролетел путь из пункта А в пункт В, двигаясь с одной и той же скоростью относительно воздуха. В первом случае, в безветренную погоду, голубь преодолел путь AB за промежуток времени $\Delta t_1 = 35$ мин. Во втором случае, при попутном ветре, скорость которого была постоянной, голубь пролетел этот путь за промежуток времени $\Delta t_2 = 30$ мин.


Если бы ветер был встречный, то путь AB голубь пролетел бы за промежуток времени Δt_3 , равный:

1) 30 мин

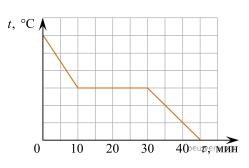
2) 35 мин

3) 38 мин 4) 42 мин


4. Кинематический закон движения материальной точки вдоль оси Ox имеет вид: $x(t) = 5 - 9t + 4t^2$, где координата x выражена в метрах, а время t — в секундах. Скорость \vec{v} и ускорение \vec{a} материальной точки в момент времени t_0 = 0 с показаны на рисунке, обозначенном цифрой:

5. Металлический шарик массой m = 80 г падает вертикально вниз на горизонтальную поверхность стальной плиты и отскакивает от нее вертикально вверх с такой же по модулю скоростью: $\upsilon_2=\upsilon_1$. Если непосредственно перед падением на плиту модуль его скорости $\upsilon_1 = 5,0$ $\frac{M}{c}$, то модуль изменения импульса $|\Delta p|$ шарика при ударе о плиту равен: $1) \ 0,2 \frac{K\Gamma \cdot M}{c} \qquad 2) \ 0,4 \frac{K\Gamma \cdot M}{c} \qquad 3) \ 0,6 \frac{K\Gamma \cdot M}{c} \qquad 4) \ 0,8 \frac{K\Gamma \cdot M}{c} \qquad 5) \ 1,0 \frac{K\Gamma \cdot M}{c}$

1)
$$0,2\frac{\mathrm{K}\Gamma\cdot\mathrm{M}}{c}$$

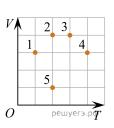

6. Запаянную с одного конца трубку наполнили маслом ($\rho = 900 \ \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$), а затем погрузили открытым концом в широкий сосуд с маслом (см.рис.). Если атмосферное давление p = 99.9 кПа, то высота столба h равна:

1) 11,1 m 2) 11,8 m 3) 12,5 m 4) 13,2 m

5) 13,6 м

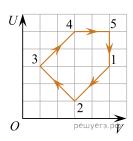
7. В момент времени $\tau_0 = 0$ мин кристаллическое вещество начали охлаждать при постоянном давлении, ежесекундно отнимая у вещества одно и то же количество теплоты. На рисунке приведён график зависимости температуры t вещества от времени т. Половина массы вещества закристаллизовалась к моменту времени τ_1 , равному:

1) 5 мин


2) 10 мин

3) 20 мин

4) 30 мин


5) 35 мин

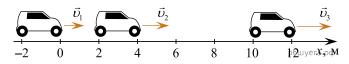
8. На V-Т диаграмме изображены различные состояния некоторого вещества. Состояние с наибольшей средней кинетической энергией молекул обозначено цифрой:

1) 1 2) 2 3)3 5)5

9. С идеальным одноатомным газом, количество вещества которого постоянно, провели процесс 1→2→3→4→5→1. На рисунке показана зависимость внутренней энергии U газа от объема V. Укажите участок, на котором количество теплоты, полученное газом, шло только на работу, которую газ совершал:

1) $1 \rightarrow 2$ 2) $2\rightarrow 3$ 3) $3 \rightarrow 4$ 5) $5 \rightarrow 1$

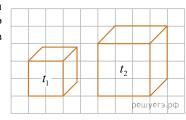
10. Мощность электромобиля измеряется в:

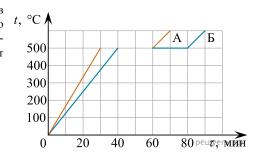

- 1) киловаттах 2) киловольтах
 - 3) килоамперах
- 4) киловатт-часах
- 5) килоомах

11. Из одной точки с высоты H бросили два тела в противоположные стороны. Начальные скорости тел направлены горизонтально, а их модули $\upsilon_1=10$ м/с и $\upsilon_2=15$ м/с. Если расстояние между точками падения тел на горизонтальной поверхности земли L = 100 м, то чему равна высота H? Ответ приведите в метрах.

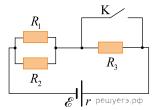
12. Тело движется вдоль оси Ox под действием силы \vec{F} . Кинематический закон движения тела имеет вид: $x(t) = A + Bt + Ct^2$, где A = 6.0 м, B = 8.0 м/c, $C = 2.0 \text{ м/c}^2$. Если масса тела m = 1.1 кг, то в момент времен t = 3.0 с мгновенная мощность P силы равна ... BT.

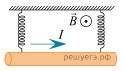
13. На дне вертикального цилиндрического сосуда, радиус основания которого R=10 см, неплотно прилегая ко дну, лежит кубик. Если масса кубика m= 215 г, а длина его стороны a = 10 см, то для того, чтобы кубик начал плавать, в сосуд нужно налить минимальный объем V_{\min} воды ($\rho_{\rm B} = 1{,}00~{\rm г/cm}^3$), равный ... ${\bf cm}^3$.

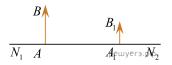

14. На рисунке представлены фотографии электромобиля, сделанные через равные промежутки времени $\Delta t = 1.8$ с. Если электромобиля, тромобиль двигался прямолинейно и равноускоренно, то в момент времени, когда был сделан второй снимок, проекция скорости движения электромобиля v_x на ось Ox была равна ... км/ч.

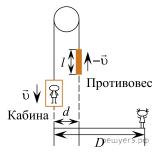

15. В сосуде под давлением p=450 кПа находится кислород (M=32 г/моль) массой m=500 г при температуре t=18 °C. Чему равна вместимость V сосуда? Ответ приведите в литрах.

Примечание. Кислород считать идеальным газом.


16. Два однородных кубика (см. рис.), изготовленные из одинакового материала, привели в контакт. Если начальная температура первого кубика $t_1 = 20$ °C, а второго — $t_2 = 55$ °C, то при отсутствии теплообмена с окружающей средой установившаяся температура t кубиков равна ... °С.


17. Два образца A и Б, изготовленные из одинакового металла, расплавили в печи. Количество теплоты, подводимое к каждому образцу за одну секунду, было одинаково. На рисунке представлены графики зависимости температуры t образцов от времени τ . Если образец A имеет массу $m_{\rm A}=4,5~{\rm Kr}$, то образец Б имеет массу $m_{\rm B}$, равную ... кг.

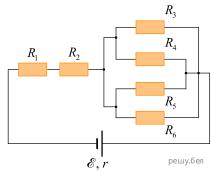

18. На рисунке представлена схема электрической цепи, состоящей из источника тока, ключа и трех резисторов, сопротивления которых $R_1=R_2=6{,}00$ Ом, $R_3=2{,}00$ Ом. По цепи в течение промежутка времени $t=30{,}0$ с проходит электрический ток. Если ЭДС источника тока $\epsilon=12{,}0$ В, а его внутреннее сопротивление $r=1{,}00$ Ом, то работа $A_{\rm CT}$ сторонних сил источника тока при разомкнутом ключе К равна ... Дж.


- 19. Два находящихся в вакууме маленьких заряженных шарика, заряды которых $q_1 = q_2 = 40$ нКл массой m = 8,0 мг каждый подвешены в одной точке на лёгких шёлковых нитях одинаковой длины. Если шарики разошлись так, что угол между нитями составил $\alpha = 90^\circ$, то длина каждой нити l равна ... см.
- **20.** В однородном магнитном поле, модуль индукции которого B=0,20 Тл, на двух одинаковых невесомых пружинах жёсткостью k=100 Н/м подвешен в горизонтальном положении прямой однородный проводник длиной L=1,0 м (см. рис.), Линии магнитной индукции горизонтальны и перпендикулярны проводнику. Если при отсутствии тока в проводнике длина каждой пружины была $x_1=21$ см, то после того, как по проводнику пошёл ток I=40 А, длина каждой пружины x_2 в равновесном положении стала равной ... **см**.

- **21.** В идеальном LC-контуре, состоящем из катушки индуктивности $L=20~{\rm M}\Gamma$ н и конденсатора емкостью $C=0,22~{\rm M}\kappa\Phi$, происходят свободные электромагнитные колебания. Если в момент времени, когда сила тока в катушке $I=40~{\rm MA}$, напряжение на конденсаторе $U=10~{\rm B}$, то полная энергия контура равна ... мкДж.
- **22.** Маленькая заряжённая бусинка массой m=1,5 г может свободно скользить по оси, проходящей через центр тонкого незакреплённого кольца перпендикулярно его плоскости. По кольцу, масса которого M=4,5 г и радиус R=40 см, равномерно распределён заряд Q=3,0 мкКл. В начальный момент времени кольцо покоилось, а бусинке, находящейся на большом расстоянии от кольца, сообщили скорость, модуль которой $\upsilon_0=2,4$ $\frac{\mathrm{M}}{\mathrm{c}}$. Максимальный заряд бусинки q_{max} , при котором она сможет пролететь сквозь кольцо, равен ... **нКл**.
- **23.** Стрелка AB высотой H=3,0 см и её изображение A_1B_1 высотой h=2,0 см,формируемое тонкой линзой, перпендикулярны главной оптической оси N_1N_2 линзы (см. рис.). Если расстояние между стрелкой и её изображением $AA_1=7,0$ см, то модуль фокусного расстояния |F| линзы равен ... см.

24. Парень, находящийся в середине движущейся вниз кабины панорамного лифта торгового центра, встретился взглядом с девушкой, неподвижно стоящей на расстоянии D=8,0 м от вертикали, проходящей через центр кабины (см. рис.). Затем из-за непрозрачного противовеса лифта длиной l=4,1 м, движущегося на расстоянии d=2,0 м от вертикали, проходящей через центр кабины, парень не видел глаза девушки в течение промежутка времени $\Delta t=3,0$ с. Если кабина и противовес движутся в противоположных направлениях с одинаковыми по модулю скоростями, то чему равен модуль скорости кабины? Ответ приведите а сантиметрах в секунду.

25. Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 А, C=-0,50 $\frac{\mathrm{A}}{\mathrm{c}}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.

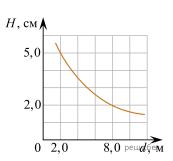

26. Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal E=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10,0 \,\text{Om}.$$

В резисторе R_6 выделяется тепловая мощность $P_6=90,0$ Вт. Если внутреннее сопротивление источника тока r=4,00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.



- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm Л}=6,4\cdot 10^{-15}~{\rm H}$, то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0.20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1.0\cdot 10^4 \ \frac{\mathrm{pag}}{\mathrm{c}},$ то ёмкость C конденсатора равна ... мк Φ .

30

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

